NOTE

PARTIAL SYNTHESIS OF $[6\alpha - {}^{3}H]$ GIBBERELLIN-A₃ OF HIGH SPECIFIC ACTIVITY ¹

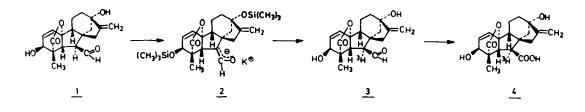
M. Lischewski^{*} Institute of Plant Biochemistry, Research Centre for Molecular Biology and Medicine, Academy of Sciences of the GDR DDR-4010 Halle (Saale), German Democratic Republic

U. Pleiß Central Institute of Nuclear Research Rossendorf, Academy of Sciences of the GDR, DDR-8051 Dresden, German Democratic Republic

SUMMARY

The phytohormone gibberellin-A, was tritium-labelled by a chemical route. The specific activity of the $[6 \alpha - {}^{3}H]$ gibberellin-A₃ obtained was 22.5 Ci/mmol.

Keywords: Gibberellin-A3, Tritium, High Specific activity labelling


INTRODUCTION

The availability of high specific activity tritiated gibberellin- A_3 (GA₃) is very important, for example, for the investigation of hormone-receptor-relationships in plants and for use in radioimmunoassay.

Recently, we reported new procedures for the preparation of $[15-{}^{3}H]GA_{3} \,^{2}$ and $[6 \, \alpha - {}^{3}H]GA_{3} \, (4)^{3}$. In addition to the latter synthesis, we wish to describe a preparation of $[6 \, \alpha - {}^{3}H]GA_{3} \, (4)$ at high molar specific activity.

EXPERIMENTAL AND PURIFICATION

 GA_3 -7-aldehyde (<u>1</u>) (115.2 mg)⁴ was silylated with $Me_3Si-NH-SiMe_3$ and Me_3SiCl in pyridine and enolized with KH^3 . The resulting enolate 2 was tritium-labelled by addition of ${}^{3}\text{H}_{2}\text{O}$ [prepared by platinum oxide-oxidation of carrier-free tritium gas (100 Ci)⁵ and destilled into the enclate solution 2 using a high vacuum line]. Analogous working up and SiC₂-chromatography as described³ gave in 26 % yield $[6 \propto -3 H] GA_3$ -7-aldehyde (3) [30.2 mg not optimized; specific radioactivity approximately 22 Ci/mmol; radiochemical purity > 97 % determined by TLC using CHCl_/EtOAc/AcOH (90:10:5)]. After storage for one month in ethanol at -30 °C, the radiochemical purity of 3 decreased to approximately 60 %. The by-product

 $[6-^{3}H]$ 6-epi-GA₃-7-aldehyde was not isolated. Acetylation, oxidation and deacetylation of 2 (3 mg) as described³ yielded $[6\alpha - H]$ -GA3 (4), which was purified four times on a preparative plate (silica 60 from Merck, 0.3 mm) in acetone/ethylacetate/toluene/ water (70:30:15:10) as well as chloroform/methanol/acetic acid (80:15:5). We obtained 8.3 mCi (not optimized) $[6\alpha - {}^{3}H]GA_{3}$: radiochemical purity > 97 %; specific radioactivity 22.5 Ci/mmol (determined by liquid scintillation counting and by fluorimetry. $[6 \propto -3 H]$ GA₃ (1 mCi) was stored in ethanol (3 ml) at -30⁰ for three monthsduring which time the radiochemical purity dropped to 85 %.

REFERENCES

- Gibberelline part 105; for part 104 see Voigt, B. and Adam, G. Z. Chem. 23: 177 (1983)
 Lischewski, M. and Adam, G. J. Lab. Comp. Radiopharm. 19: 1231 (1982)
- Lischewski, M., Adam, G., Liebisch, H.-W. and Pleiß, U. -J. Lab. Comp. Radiopharm. <u>19</u>: 725 (1982)
 Lischewski, M. and Adam, G. Tetrahedron <u>36</u>: 1237 (1980)
 Fleiß, U. and Römer, J. GDR patent 248 680/8 (8.2.1983)